Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We have developed a strategy for synthesizing immediately activable, water-soluble, compact (∼10–12 nm hydrodynamic diameter) quantum dots with a small number of stable and controllable conjugation handles for long distance delivery and subsequent biomolecule conjugation. Upon covalent conjugation with engineered monovalent streptavidin, the sample results in a population consisting of low-valency quantum dots. Alternatively, we have synthesized quantum dots with a small number of biotin molecules that can self-assemble with engineered divalent streptavidin via high-affinity biotin–streptavidin interactions. Being compact, stable and highly specific against biotinylated proteins of interest, these low-valency quantum dots are ideal for labeling and tracking single molecules on the cell surface with high spatiotemporal resolution for different biological systems and applications.

Graphical abstract: Stable, small, specific, low-valency quantum dots for single-molecule imaging

Page: ^ Top