Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2018

Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity

Author affiliations

Abstract

Polyaniline (PANI) has been extensively studied in the past few decades owing to its broad applications in electronic devices. However, two dimensional PANI was not realized until very recently. In this work, the thermal transport properties of one of the newly synthesized 2D PANI structures, C3N, are systematically investigated using classical molecular dynamics simulations. The in-plane thermal conductivity (κ) of monolayer and bilayer C3N structures is computed, and the κ values for infinite-length systems are found to be as high as 820 and 805 W m−1 K−1, respectively. Both the values are markedly higher than those of many prevailing 2D semiconducting materials such as phosphorene, hexagonal boron nitride, MoS2 and MoSe2. The effects of different modulators, such as system dimension, temperature, interlayer coupling strength and tensile strain, on the calculated thermal conductivity are evaluated. Monotonic decreasing trends of thermal conductivity with temperature and tensile strain are found, while a positive correlation between the thermal conductivity and system dimension is revealed. Interlayer coupling strength is found to have negligible effects on the in-plane thermal conductivity of bilayer C3N. The cross-plane interfacial thermal resistance (R) between two adjacent C3N layers is evaluated in the temperature range from 100 to 500 K and at different coupling strengths. The predicted R at temperature 300 K equals 3.4 × 10−8 K m−2 W−1. The maximum reductions of R can amount to 59% and 68% with respect to temperature and coupling strength, respectively. Our results provide theoretical guidance to future applications of C3N-based low-dimensional materials in electronic devices.

Graphical abstract: Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity

Article information


Submitted
13 Nov 2017
Accepted
24 Jan 2018
First published
25 Jan 2018

Nanoscale, 2018,10, 4301-4310
Article type
Paper

Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity

Y. Hong, J. Zhang and X. C. Zeng, Nanoscale, 2018, 10, 4301 DOI: 10.1039/C7NR08458G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements