Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2018
Previous Article Next Article

Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries

Author affiliations

Abstract

Functional porous carbon materials are widely used to solve the low conductivity and shuttle effect of Li–S batteries; however, the common carbon/sulfur composite electrodes based on traditional technology (with conducting agents and binders) make it difficult for a battery to work stably at an ultra-high sulfur loading of 10 mg cm−2. Herein, an appropriate content of sulfur was injected into a pomegranate-like structure self-assembled with nanohollows (PSSN) of N-graphene. The Li-PSSN/S battery based on traditional technology displays a large-capacity, high-rate and long-life at an ultra-high areal-sulfur loading of 10.1 mg cm−2. The excellent performance with ultra-high areal-sulfur loading can be attributed to the hierarchal nanohollows with graphene-shells being in close contact to build a 3D-electronic conduction network and promoting electrolyte adsorption into the entire electrode to maintain rapid Li-ion transport, while stopping the shuttle-effect via the strong interaction of polysulfide with the doped N elements on graphene-shells. In addition, the exact sulfur content can provide just enough space to maintain the huge volume change and constant thickness of the S-electrodes during the charge–discharge process to enhance the cycling stability.

Graphical abstract: Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries

Back to tab navigation

Supplementary files

Article information


Submitted
11 Sep 2017
Accepted
24 Nov 2017
First published
27 Nov 2017

Nanoscale, 2018,10, 386-395
Article type
Paper

Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries

H. Tang, J. Yang, G. Zhang, C. Liu, H. Wang, Q. Zhao, J. Hu, Y. Duan and F. Pan, Nanoscale, 2018, 10, 386
DOI: 10.1039/C7NR06731C

Social activity

Search articles by author

Spotlight

Advertisements