Jump to main content
Jump to site search


Highly hydrothermal stable mesoporous molecular sieves (TZM) prepared by the self assembly of zeolitic subunits from ZSM-5 desilication and their catalytic performance for CO2 reforming of CH4

Author affiliations

Abstract

We demonstrated a new strategy for the preparation of highly stable mesoporous molecular sieves (TZM) by the desilication of ZSM-5 zeolite and self-assembly of the zeolite subunits in a Na2O·(3.3–3.4) SiO2 aqueous solution. Na2O·(3.3–3.4) SiO2 in the aqueous solution plays two roles in the synthesis, one is providing a moderate alkaline medium with a buffering effect for the desilication of ZSM-5 zeolite, and the other one is supplementing the silica source. The desilication of ZSM-5 zeolite was optimized by the adjustment of reaction temperature and time, and pH of the solution. TZM were characterized by X-ray diffraction (XRD), N2 adsorption/desorption (BET), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The characterization results show that the characteristics of ZSM-5 zeolite, such as double six-membered or five-membered ring subunits, were still preserved in TZM, and TZM possessed the well-ordered mesostructure of ZSM-5 zeolite crystals. Compared with the pure silica mesoporous molecular sieve (Si-MCM-41, 4 days), the hydrothermal stability of TZM (8 days) was increased by 100% in refluxed water. The significant improvement of TZM hydrothermal stability was due to an increase of the surface hydrophobicity and the ratio of 5-rings or 6-rings, and a remarkable decrease in the number of hydrophilic silanol groups. After hydrothermal treatment for 8 days, TZM also exhibited a more efficient catalytic activation than Si-MCM-41 treated for 4 days in the CO2 reforming of methane reaction at 1023 K (750 °C). The 5% Ni/TZM-8-Glu (5 wt% Ni, loading) catalyst prepared by a glucose modified impregnation method exhibited excellent catalytic activity, which provided 73% CH4 and 72.5% CO2 conversion at 1023 K (750 °C).

Graphical abstract: Highly hydrothermal stable mesoporous molecular sieves (TZM) prepared by the self assembly of zeolitic subunits from ZSM-5 desilication and their catalytic performance for CO2 reforming of CH4

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Aug 2018, accepted on 12 Oct 2018 and first published on 05 Nov 2018


Article type: Paper
DOI: 10.1039/C8NJ03861A
Citation: New J. Chem., 2018, Advance Article
  •   Request permissions

    Highly hydrothermal stable mesoporous molecular sieves (TZM) prepared by the self assembly of zeolitic subunits from ZSM-5 desilication and their catalytic performance for CO2 reforming of CH4

    J. Xu, Q. Zhang, F. Guo, Y. Wang and J. Xie, New J. Chem., 2018, Advance Article , DOI: 10.1039/C8NJ03861A

Search articles by author

Spotlight

Advertisements