Issue 19, 2018

Electrical and electrochemical properties of lithium solvated electron solutions derived from 1,3,5-triphenylbenzenes

Abstract

A series of 1,3,5-triphenylbenzenes (TPBs) bearing various substituents have been made and their ability to form lithium solvated electron solutions (LiSESs) in tetrahydrofuran (THF) solution have been studied. It was found that the TPBs bearing electron withdrawing substituents were of too low solubility in THF to allow formation of LiSESs, whereas the unsubstituted TPB and TPBs bearing solubilizing alkyl and alkoxy substituents were able to form LiSESs in THF upon addition of lithium. The highest conductivity values for LISESs in THF were obtained from the parent TPB, despite its lower solubility in THF compared to the alkyl- and alkoxy-substituted TPBs. The LiSES from the methoxy-substituted TPB showed a much lower conductivity, which was attributed to the electron donating effect of the alkoxy substituent making the TPB less willing to accept an electron from the lithium and thus significantly reducing the number of charge carriers generated. The alkyl-substituted TPB LiSES showed a slightly lower conductivity than the parent TPB, which is attributed to the insulating effects of the alkyl substituents. The conductivities of the LiSESs were found to be highest for a Li : TPB ratio of 2 : 1, suggesting that the materials act like substituted biphenyls. All the SESs showed a metal-like decrease in conductivity with rising temperature. Studies of open circuit voltage versus temperature for the LiSESs made from unsubstituted TPB indicated that the entropy change (ΔS) values of these solutions during discharge were higher than for SESs made using biphenyl or naphthalene and much higher than for solid lithium ion battery anode materials.

Graphical abstract: Electrical and electrochemical properties of lithium solvated electron solutions derived from 1,3,5-triphenylbenzenes

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2018
Accepted
17 Aug 2018
First published
17 Aug 2018

New J. Chem., 2018,42, 15678-15683

Electrical and electrochemical properties of lithium solvated electron solutions derived from 1,3,5-triphenylbenzenes

A. V. Lunchev, K. S. Tan, A. C. Grimsdale and R. Yazami, New J. Chem., 2018, 42, 15678 DOI: 10.1039/C8NJ03362E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements