Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2018

Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors

Author affiliations

Abstract

Research on metal-ion hybrid capacitors is emerging as one of the hottest topics in energy storage fields because of their combination of high power and energy densities. To improve the sluggish faradaic reaction in traditional electrode materials for metal-ion hybrid capacitors, intercalation pseudocapacitive materials have been developed as attractive candidates. However, all the previously reported pseudocapacitances in intercalation/deintercalation reactions are based on cations (Li+, Na+, Zn2+etc.). In this work, we demonstrated the high pseudocapacitance contribution in boron-doped graphite (BG) sheets by taking advantage of anion storage. The BG electrode can reversibly store anions (PF6) through both a surface-controlled pseudocapacitive reaction and a diffusion-limited intercalation/deintercalation reaction. The fabricated Na-ion hybrid capacitor with a BG cathode exhibits superior electrochemical performance. Density functional theory (DFT) calculation reveals that B-doping can significantly reduce the PF6 diffusion energy barrier in the graphite layers.

Graphical abstract: Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors

Supplementary files

Article information


Submitted
05 Feb 2018
Accepted
16 Mar 2018
First published
23 Mar 2018

Mater. Horiz., 2018,5, 529-535
Article type
Communication

Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors

F. Yu, Z. Liu, R. Zhou, D. Tan, H. Wang and F. Wang, Mater. Horiz., 2018, 5, 529 DOI: 10.1039/C8MH00156A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements