Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 22, 2018
Previous Article Next Article

A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol

Author affiliations

Abstract

A versatile, tunable and robust continuous flow procedure for the deoxydehydration (DODH) of biobased erythritol toward 3-butene-1,2-diol is described. The procedure relies on specific assets of multistep continuous flow processing. Detailed mechanistic and computational studies on erythritol show that either 3-butene-1,2-diol or butadiene are obtained in high selectivity and yield on demand, as a function of the DODH reagent/substrate ratio and of the process parameters. Short reaction times (1–15 min) at high temperature (225–275 °C) and moderate pressure are reported. 3-Butene-1,2-diol is then further converted downstream into its corresponding carbonate, i.e. 4-vinyl-1,3-dioxolan-2-one (vinyl ethylene carbonate), an important industrial building block. The carbonation step uses a supported organocatalyst, and could be directly concatenated to the first DODH step. This unprecedented procedure also relies on a unique combination of on- and off-line analytical protocols for reaction monitoring and product quantification, and offers a biobased strategy toward important industrial building blocks otherwise petrosourced.

Graphical abstract: A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol

Back to tab navigation

Supplementary files

Article information


Submitted
06 Aug 2018
Accepted
27 Sep 2018
First published
27 Sep 2018

Green Chem., 2018,20, 5147-5157
Article type
Paper

A versatile biobased continuous flow strategy for the production of 3-butene-1,2-diol and vinyl ethylene carbonate from erythritol

N. N. Tshibalonza, R. Gérardy, Z. Alsafra, G. Eppe and J. M. Monbaliu, Green Chem., 2018, 20, 5147
DOI: 10.1039/C8GC02468E

Social activity

Search articles by author

Spotlight

Advertisements