Issue 11, 2018

A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning

Abstract

The antioxidant quercetin (Q) is a bioactive compound that can inhibit colon cancer. However, its poor stability in the upper gastro-intestinal tract and low bioavailability compromised its benefits. In this study, a biopolymer-based colon-specific delivery system for Q was constructed by co-axial electrospinning. Quercetin-loaded chitosan nanoparticles (QCNP) were firstly prepared and characterized. Then, a Q-loaded electrospun fiber mat (Q-loaded EFM) containing prebiotics (galactooligosaccharide, GOS) was fabricated using sodium alginate as the shell layer and the abovementioned QCNP and prebiotics as the core layer. The DPPH assay showed that the antioxidant activity of Q was maintained in the obtained film. Owing to the addition of prebiotic GOS, the obtained fiber mat exhibited good prebiotic effects. In vitro release kinetics showed a sustained and targeted colon-specific release of Q from the Q-loaded EFM containing GOS, and the release rate of Q was enhanced by the presence of GOS. The obtained film also exhibited inhibition effects on Caco-2 cells in a dose- and time-dependent manner. Flow cytometry and fluorescence microscopy analysis indicated that the Q-loaded EFM containing GOS exerted its activity on colonic cancer cells by arresting the cell cycle in the G0/G1 phase and triggering apoptotic cell death. This study demonstrates the potential of the obtained film as an oral delivery system for encapsulation, protection, and release of Q at the colon for the oral therapy of colon disorders.

Graphical abstract: A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2018
Accepted
07 Oct 2018
First published
08 Oct 2018

Food Funct., 2018,9, 5999-6009

A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning

P. Wen, T. Hu, L. Li, M. Zong and H. Wu, Food Funct., 2018, 9, 5999 DOI: 10.1039/C8FO01216D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements