Issue 4, 2018

Protective effects of Coptis chinensis inflorescence extract and linarin against carbon tetrachloride-induced damage in HepG2 cells through the MAPK/Keap1-Nrf2 pathway

Abstract

Coptis chinensis inflorescence is traditionally used as tea and has been popular in the local market. C. chinensis inflorescence extract (CE) exhibits protective effects against carbon tetrachloride (CCl4)-induced damage, but the underlying mechanism remains unclear. The main chemicals of CE were detected, purified, and identified in this study. CE and linarin could reverse changes in cell viability, decrease alanine aminotransferase and aspartate transaminase levels, and reduce reactive oxygen species (ROS) generation induced by CCl4 in HepG2 cells. CE and linarin could also phosphorylate mitogen-activated protein kinases (MAPKs) and up-regulate Kelth-like ECH-associated protein (Keap1). The pathways of MAPKs and Keap1 lead to the separation of Keap1 and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Free Nrf2 transferred to the nucleus and enhanced the expression of phase II detoxification enzymes. This study provides a scientific basis for the use of C. chinensis inflorescence, which exhibits a hepatoprotective function, as a supplement in the food industry.

Graphical abstract: Protective effects of Coptis chinensis inflorescence extract and linarin against carbon tetrachloride-induced damage in HepG2 cells through the MAPK/Keap1-Nrf2 pathway

Article information

Article type
Paper
Submitted
13 Jan 2018
Accepted
02 Mar 2018
First published
05 Mar 2018

Food Funct., 2018,9, 2353-2361

Protective effects of Coptis chinensis inflorescence extract and linarin against carbon tetrachloride-induced damage in HepG2 cells through the MAPK/Keap1-Nrf2 pathway

B. Ma, X. Meng, J. Tong, L. Ge, G. Zhou and Y. Wang, Food Funct., 2018, 9, 2353 DOI: 10.1039/C8FO00078F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements