Jump to main content
Jump to site search


A Kinetic Model for Redox-Active Film Based Biophotoelectrodes

Abstract

Redox-active films are advantageous matrices for the immobilization of photosynthetic proteins, due to their ability to mediate electron transfer as well as to achieve high catalyst loading on an electrode for efficient generation of electricity or solar fuels. A general challenge arises from various charge recombination pathways along the light-induced electron transfer chain from electrode to the charge carriers or to the solar fuels. Experimental methods based on current measurement or product quantification are often unable to discern between the contributions from the photocatalytic process and the detrimental effect of the short-circuiting reactions. Here we report on a general electrochemical model of the reaction-diffusion processes to identify and quantify the "bottlenecks" present in the fuel or current generation. The model is able to predict photocurrenttime curves including deconvolution of the recombination contributions, and to visualize the corresponding time dependent concentration profiles of the product. Dimensionless groups are developed for straightforward identification of the limiting processes. The importance of the model for quantitative understanding of biophotoelectrochemical processes is highlighted with an example of simulation results predicting the effect of the diffusion coefficient of the charge carrier on photocurrent generation for different charge recombination kinetics.

Back to tab navigation

Publication details

The article was accepted on 18 Dec 2018 and first published on 30 Jan 2019


Article type: Paper
DOI: 10.1039/C8FD00168E
Citation: Faraday Discuss., 2018, Accepted Manuscript
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A Kinetic Model for Redox-Active Film Based Biophotoelectrodes

    D. Buesen, T. Hoefer, H. Zhang and N. Plumere, Faraday Discuss., 2018, Accepted Manuscript , DOI: 10.1039/C8FD00168E

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements