Jump to main content
Jump to site search

Photoelectron spectra of Al2O2- and Al3O3- via slow electron velocity-map imaging


High-resolution photoelectron spectra of cryogenically-cooled Al2O2- and Al3O3- cluster anions are obtained using slow electron velocity-map imaging. These spectra show vibrationally-resolved detachment from the X2B3u ground state of Al2O2- to the X1Ag and A3B3u neutral electronic states, giving an electron affinity of 1.87904(4) eV for neutral Al2O2 and a term energy of 0.4938(4) eV for the triplet excited state. Additionally, there is evidence for autodetachment from photoexcited anions as well as influences from vibronic coupling between excited states of the neutral Al2O2 cluster. Detachment from both the “kite” and “book” isomers of Al3O3- is observed, yielding electron affinities of 2.0626(4) and 2.792(3) eV for the corresponding neutral isomers. Experiments carried out at different anion temperatures suggest that the two anionic isomers are nearly isoenergetic but clearly identify the kite isomer as the global minimum structure, in contrast to prior studies. This finding is supported by density functional theory calculations, which show that the relative ordering of the anion isomers is sensitive to basis set size; calculations for the anion isomers at the B3LYP/aug-cc-pVQZ level find the kite isomer to lie 0.011 eV below the book isomer.

Back to tab navigation

Supplementary files

Publication details

The article was accepted on 29 Nov 2018 and first published on 29 Nov 2018

Article type: Paper
DOI: 10.1039/C8FD00165K
Citation: Faraday Discuss., 2018, Accepted Manuscript

  •   Request permissions

    Photoelectron spectra of Al2O2- and Al3O3- via slow electron velocity-map imaging

    J. A. DeVine, M. C. Babin and D. M. Neumark, Faraday Discuss., 2018, Accepted Manuscript , DOI: 10.1039/C8FD00165K

Search articles by author