Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2018
Previous Article Next Article

Integrated, multi-process approach to total nutrient recovery from stored urine

Author affiliations

Abstract

This study investigated an integrated, multi-process approach of using struvite precipitation, ammonia stripping–acid absorption, and evaporation to recover phosphorus (P), nitrogen (N), and potassium (K), respectively, from stored urine. The process produces separate nutrient products that can then be recombined to produce customized fertilizers of any NPK ratio. Bench-scale experiments were conducted using three stored urine solutions: synthetic urine, synthetic urine with six endogenous metabolites, and real urine. For struvite precipitation, MgCl2·6H2O, MgCO3, and MgO were tested and dosed at a molar ratio of 1.1 : 1 Mg : P. There was a statistically significant difference between total phosphate (TP) recovered by each magnesium (Mg) source and urine solution; MgCl2·6H2O (91–94% TP recovered) > MgCO3 (55–77%) > MgO (52–66%) and real urine > synthetic urine with six endogenous metabolites > synthetic urine. For ammonia stripping–acid absorption, there was a statistically significant difference between TAN recovery and experimental stripping conditions where increasing both the pH and temperature recovered a higher percent of TAN compared to solely increasing the pH or temperature of the solution. In real urine, consumed cost for stripping increased as follows: control condition of pH 9.2, 22 °C < elevated pH condition of pH 10.5, 22 °C < elevated temperature condition of pH 9.2, 70 °C. There was no statistically significant difference between the Mg source and TAN recovery in real urine and synthetic urine with metabolites but there was in synthetic urine. Furthermore, the amount of TAN recovered in real urine and synthetic urine with metabolites was consistently greater than or approximately equal to synthetic urine. This suggests that using synthetic urine as a proxy for real urine is not suitable for N recovery. For evaporation, there was a statistically significant difference between the urine solution and conditions for N recovery (i.e., temperature and/or pH) on K recovery and product purity. As the pH was increased, the purity of the final K product, potash, decreased due to sodium from NaOH. Results from this study show that an integrated, multi-process approach to urine treatment can achieve approximately 99% N, 91% P, and 80% K recovery as fertilizer products.

Graphical abstract: Integrated, multi-process approach to total nutrient recovery from stored urine

Back to tab navigation

Supplementary files

Article information


Submitted
03 Jan 2018
Accepted
02 Aug 2018
First published
28 Aug 2018

This article is Open Access

Environ. Sci.: Water Res. Technol., 2018,4, 1639-1650
Article type
Paper

Integrated, multi-process approach to total nutrient recovery from stored urine

N. Jagtap and T. H. Boyer, Environ. Sci.: Water Res. Technol., 2018, 4, 1639
DOI: 10.1039/C8EW00004B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements