Jump to main content
Jump to site search

Issue 8, 2018
Previous Article Next Article

Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection

Author affiliations

Abstract

Hydrogen peroxide (H2O2) is a key species in many environmental processes such as the electro-Fenton system to remove organic pollutants in wastewater treatment. Traditional methods for measuring H2O2 are often complex and time-consuming. Due to their low cost and high catalytic activity, transition metals (TM) can be used as high-performance electrochemical sensing materials for detecting H2O2. However, the aggregation of metal atoms will severely limit their catalytic efficiency and exposure area. In this study, we explored a method to disperse TM homogeneously on a zeolitic imidazolate framework-8 (ZIF-8) derived nitrogen-doped carbon (N/C) nanoframework and used it as the electrocatalyst for detecting H2O2 in an electro-Fenton system. Cu and Mn were used as the examples. Benefitting from the homogeneously dispersed TM, the synthesized nanoframework with a low content of TM exhibits superior electrocatalytic activity and an anti-interference ability in detecting H2O2. It has a wide linear range (0.0005–50 mM for 1% Cu–N/C and 0.0001–50 mM for 1% Mn–N/C) and a low detection limit (0.047 μM for 1% Cu–N/C and 0.036 μM for 1% Mn–N/C). Using the synthesized nanoframework, a system for continuously detecting the H2O2 concentration in an electro-Fenton system in situ was presented. The reported method to fabricate such nanomaterials with a higher catalytic efficiency of TM has implications in other applications such as environmental treatment, catalysis, and energy conversion.

Graphical abstract: Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection

Back to tab navigation

Supplementary files

Publication details

The article was received on 11 May 2018, accepted on 11 Jul 2018 and first published on 17 Jul 2018


Article type: Paper
DOI: 10.1039/C8EN00498F
Citation: Environ. Sci.: Nano, 2018,5, 1834-1843
  •   Request permissions

    Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection

    Z. Li, Y. Jiang, C. Liu, Z. Wang, Z. Cao, Y. Yuan, M. Li, Y. Wang, D. Fang, Z. Guo, D. Wang, G. Zhang and J. Jiang, Environ. Sci.: Nano, 2018, 5, 1834
    DOI: 10.1039/C8EN00498F

Search articles by author

Spotlight

Advertisements