Jump to main content
Jump to site search

Issue 12, 2018
Previous Article Next Article

Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils

Author affiliations

Abstract

Nanosized TiO2 is one of the most produced nanomaterials. Agricultural soils are a major compartment of accumulation of TiO2-NPs after release from consumer products into the sewer system, due to the use of sewage sludge as a soil amendment. TiO2 is naturally present in soils, and distinguishing between anthropogenic and natural TiO2 in soils is thus important to assess the risks associated with the increased use of nano-TiO2. Methods to distinguish these materials in complex matrices such as soils are currently lacking. The purpose of this study was, therefore, to search for characteristic physical and chemical properties of natural and engineered nano-TiO2, based on a combination of bulk, micro and nanofocused X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, X-ray diffraction and chemical analyses. Digested sewage sludge, agricultural soil and sludge-amended soil were studied by these techniques. The particle size distribution was not a relevant criterion since the sludge and the sludge-amended soil contained a variety of nanometer- and micrometer sized Ti-containing particles. Both the sludge and the soil contained a mixture of rutile and anatase, with a minor proportion of amorphous TiO2. In the sludge, there was no trend relating particle size and Ti mineralogy. The morphology of the TiO2 particles proved to be different in the two matrices, with smooth faceted particles in the sludge and rough irregular ones in the soil. In addition, natural TiO2 particles were included in micro and macroaggregates of the soil and formed intricate assemblages with minerals and organic compounds. In the sludge, TiO2 formed homo and heteroaggregates of simpler structure, richer in organic matter. Thus, the study of the morphology of TiO2 particles and their status in unperturbed mineral–organic assemblages may provide some insights into their origin. The observed differences may attenuate over time, due to the incorporation of the sludge material within the soil structure.

Graphical abstract: Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils

Back to tab navigation

Supplementary files

Publication details

The article was received on 05 Apr 2018, accepted on 06 Aug 2018 and first published on 29 Oct 2018


Article type: Paper
DOI: 10.1039/C8EN00386F
Environ. Sci.: Nano, 2018,5, 2853-2863
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Searching for relevant criteria to distinguish natural vs. anthropogenic TiO2 nanoparticles in soils

    A. E. Pradas del Real, H. Castillo-Michel, R. Kaegi, C. Larue, W. de Nolf, J. Reyes-Herrera, R. Tucoulou, N. Findling, E. Salas-Colera and G. Sarret, Environ. Sci.: Nano, 2018, 5, 2853
    DOI: 10.1039/C8EN00386F

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements