Issue 9, 2018

Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities

Abstract

Affordable sodium ion batteries hold great promise for revolutionizing stationary energy storage technologies. Sodium layered cathode materials are usually multicomponent transition metal (TM) oxides and each TM plays a unique role in the operating cathode chemistry, e.g., redox activity, structural stabilization. Engineering the three-dimensional (3D) distribution of TM cations in individual cathode particles can take advantage of a depth-dependent charging mechanism and enable a path towards tuning local TM–O chemical environments and building resilience against cathode–electrolyte interfacial reactions that are responsible for capacity fading, voltage decay and safety hazards. In this study, we create 3D compositional heterogeneity in a ternary and biphasic (O3–P3) sodium layered cathode material (Na0.9Cu0.2Fe0.28Mn0.52O2). The cells containing this material deliver stable voltage profiles, and discharge capacities of 125 mA h g−1 at C/10 with almost no capacity fading after 100 cycles and 75 mA h g−1 at 1C with negligible capacity fading after 200 cycles. The direct performance comparison shows that this material outperforms other materials with similar global compositions but different mesoscale chemical distributions. Synchrotron X-ray spectroscopy/imaging and density functional theory studies reveal depth-dependent chemical environments due to changes to factors such as charge compensation and strength of orbital hybridization. Finally, 3D spectroscopic tomography illuminates the path towards optimizing multicomponent sodium layered cathode materials, to prevent the migration of TMs upon prolonged cycling. The study reports an inaugural effort of multifaceted and counterintuitive investigation of sodium layered cathode materials and strongly implies that there is plenty of room at the bottom by tuning nano/meso scale chemical distributions for stable cathode chemistry.

Graphical abstract: Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2018
Accepted
08 May 2018
First published
25 Jun 2018

Energy Environ. Sci., 2018,11, 2496-2508

Author version available

Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities

M. M. Rahman, Y. Xu, H. Cheng, Q. Shi, R. Kou, L. Mu, Q. Liu, S. Xia, X. Xiao, C. Sun, D. Sokaras, D. Nordlund, J. Zheng, Y. Liu and F. Lin, Energy Environ. Sci., 2018, 11, 2496 DOI: 10.1039/C8EE00309B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements