Issue 5, 2018

Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction

Abstract

High Faradaic efficiency and appreciable current density are essential for future applications of the electrochemical CO2 reduction reaction (CO2RR). However, these goals are difficult to achieve simultaneously due to the severe side reaction – the hydrogen evolution reaction (HER). Herein, we successfully synthesized coordinatively unsaturated nickel–nitrogen (Ni–N) sites doped within porous carbon with a nickel loading as high as 5.44 wt% by pyrolysis of Zn/Ni bimetallic zeolitic imidazolate framework-8. Over the Ni–N composite catalysts, the CO current density increases with the overpotential and reaches 71.5 ± 2.9 mA cm−2 at −1.03 V (vs. a reversible hydrogen electrode, RHE), while maintaining a high CO Faradaic efficiency of 92.0–98.0% over a wide potential range of −0.53 to −1.03 V (vs. the RHE). Density functional theory calculations suggest that the CO2RR occurs more easily than the HER over the coordinatively unsaturated Ni–N site. Therefore, highly doped and coordinatively unsaturated Ni–N sites achieve high current density and Faradaic efficiency of the CO2RR simultaneously, breaking current limits in metal–nitrogen composite catalysts.

Graphical abstract: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction

Supplementary files

Article information

Article type
Communication
Submitted
15 Jan 2018
Accepted
19 Mar 2018
First published
22 Mar 2018

Energy Environ. Sci., 2018,11, 1204-1210

Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction

C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang and X. Bao, Energy Environ. Sci., 2018, 11, 1204 DOI: 10.1039/C8EE00133B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements