Jump to main content
Jump to site search


Reduced graphene oxide wrap buffering volume expansion of Mn2SnO4 anodes for enhanced stability in lithium-ion batteries

Author affiliations

Abstract

MSnO4 (M = Mn, Zn, Co, Mg, etc.) has been widely investigated as an anode material for lithium-ion batteries in recent years, but its practical applications are limited by serious capacity loss caused by severe volume expansion during Li+ insertion/extraction. So far, hollow structures, carbon coating, and encapsulation by reduced graphene oxide have been introduced to improve the electrochemical properties of MSnO4. In this study, Mn2SnO4 nanoparticles@reduced graphene oxide (Mn2SnO4@rGO) composites were prepared using simple steps and applied as anode materials for lithium-ion batteries. The rGO sheet encapsulated Mn2SnO4 nanoparticles show improved electrochemical properties. The first discharge capacity of Mn2SnO4@rGO reaches 1223.5 mAh g−1 and remains at 542.0 mAh g−1 after 100 cycles at a current density of 0.1 A g−1. The electrochemical properties were significantly improved compared to those of pure Mn2SnO4 nanoparticles.

Graphical abstract: Reduced graphene oxide wrap buffering volume expansion of Mn2SnO4 anodes for enhanced stability in lithium-ion batteries

Back to tab navigation

Publication details

The article was received on 30 Sep 2018, accepted on 25 Nov 2018 and first published on 26 Nov 2018


Article type: Paper
DOI: 10.1039/C8DT03942A
Citation: Dalton Trans., 2019, Advance Article
  •   Request permissions

    Reduced graphene oxide wrap buffering volume expansion of Mn2SnO4 anodes for enhanced stability in lithium-ion batteries

    L. Cui, X. Li, C. Yin, J. Wang, S. Li, Q. Zhang and S. Kang, Dalton Trans., 2019, Advance Article , DOI: 10.1039/C8DT03942A

Search articles by author

Spotlight

Advertisements