Jump to main content
Jump to site search

Issue 46, 2018
Previous Article Next Article

Temperature dependence of the spin state and geometry in tricobalt paddlewheel complexes with halide axial ligands

Author affiliations

Abstract

Trinuclear cobalt paddlewheel complexes, [Co3(dpa)4X2] (dpa = the anion of 2,2′-dipyridylamine, X = Cl, Br, –NCS, –CN, (NC)2N), are known to demonstrate a thermally-induced spin-crossover (SCO). Despite a wealth of structural and magnetic information about such complexes, the role of the axial ligand on the characteristic SCO temperature (T1/2) remains ambiguous. The situation is complicated by the observation that the solid state geometry of the complexes, symmetric or unsymmetric, with respect to the central cobalt ion, also appears to influence the SCO behavior. In order to seek trends in the relationship between the nature of the axial ligand, geometry and magnetic properties, we have prepared the first examples of tricobalt paddlewheel complexes with axial fluorido and iodido ligands, as well as two new chlorido and bromido solvates. Their SCO properties are discussed in the context of an examination of previously reported chlorido and bromido adducts. The main conclusions are: (1) T1/2 values follow the trend I < Br ≈ Cl < F; (2) while the molecular geometry is predominantly guided by crystal packing for the Cl, Br and I derivatives, the presence of an axial fluoride may favor a more symmetric core; (3) the magnetic characterization of a second example of an unsymmetric complex supports the observation that they display dramatically lower T1/2 values than their symmetric analogues; and (4) SCO in crystallographically symmetric compounds apparently occurs without loss of molecular or crystallographic symmetry, while a gradual geometric transformation linking the temperature dependence of quasi-symmetric to unsymmetric in crystallographically unconstrained compounds was found.

Graphical abstract: Temperature dependence of the spin state and geometry in tricobalt paddlewheel complexes with halide axial ligands

Back to tab navigation

Supplementary files

Article information


Submitted
21 Sep 2018
Accepted
06 Nov 2018
First published
15 Nov 2018

This article is Open Access

Dalton Trans., 2018,47, 16798-16806
Article type
Paper

Temperature dependence of the spin state and geometry in tricobalt paddlewheel complexes with halide axial ligands

A. Srinivasan, X. Wang, R. Clérac, M. Rouzières, L. R. Falvello, J. E. McGrady and E. A. Hillard, Dalton Trans., 2018, 47, 16798
DOI: 10.1039/C8DT03833C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements