Issue 43, 2018

Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands

Abstract

This work focuses on the application of dicobalt octacarbonyl (Co2(CO)8) as a metal precursor in the chemistry of formally low-valent cobalt with redox-active bis(imino)pyridine [NNN] ligands. The reactions of both mononucleating mesityl-substituted bis(aldimino)pyridine (L1) and dinucleating macrocyclic xanthene-bridged di(bis(aldimino)pyridine) (L2) with Co2(CO)8 were investigated. Independent of the metal-to-ligand ratio (1 : 1 or 1 : 2 ligand to Co2(CO)8), the reaction of the dinucleating ligand L2 with Co2(CO)8 produces a tetranuclear complex [Co4(L2)(CO)10] featuring two discrete [Co2[NNN](CO)5] units. In contrast, a related mononucleating bis(aldimino)pyridine ligand, L1, produces different species at different ligand to Co2(CO)8 ratios, including dinuclear [Co2(CO)5(L1)] and zwitterionic [Co(L1)2][Co(CO)4]. Interestingly, [Co4(L2)(CO)10] features metal–metal bonds, and no bridging carbonyls, whereas [Co2(CO)5(L1)] contains cobalt centers bridged by one or two carbonyl ligands. In either case, treatment with excess acetonitrile leads to disproportionation to the zwitterionic [Co[NNN](NCMe)2][Co(CO)4] units. The electronic structures of the complexes described above were studied with density functional theory. All the obtained bis(imino)pyridine complexes serve as catalysts for cyclotrimerization of methyl propiolate, albeit their reactivity is inferior compared with Co2(CO)8.

Graphical abstract: Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2018
Accepted
27 Sep 2018
First published
27 Sep 2018

Dalton Trans., 2018,47, 15353-15363

Author version available

Reactions of dicobalt octacarbonyl with dinucleating and mononucleating bis(imino)pyridine ligands

R. L. Hollingsworth, J. W. Beattie, A. Grass, P. D. Martin, S. Groysman and R. L. Lord, Dalton Trans., 2018, 47, 15353 DOI: 10.1039/C8DT03405B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements