Preparation of the Ru3(CO)8-pyridine-alcohol cluster and its use for the selective catalytic transformation of primary to secondary amines†
Abstract
The synthesis of pyridine alcohol based ruthenium carbonyl clusters Ru3(hep)2(CO)8 (1), Ru3(hpp)2(CO)8 (2), and Ru3(bhmp-H)2(CO)8 (3) {hep-H = 2-(2-hydroxyethyl)pyridine, hpp-H = 2-(3-hydroxypropyl)pyridine and bhmp-H2 = 2,6-bis(hydroxymethyl)pyridine} has been carried out by the reaction of the corresponding pyridine-alcohol ligands with Ru3(CO)12. Clusters 1–3 have been characterized using elemental analysis, NMR, FT-IR, mass spectrometry and single-crystal X-ray structures. The clusters were explored for the selective catalytic transformation of primary amines into secondary amines using alcohols as the mono-alkylating agents via hydrogen transfer reactions. All three display efficient catalytic activity with 1 being the most effective.