Issue 32, 2018

Enhanced photocatalytic conversion and selectivity of nitrate reduction to nitrogen over AgCl/TiO2 nanotubes

Abstract

TiO2 nanotubes (TNTs) and AgCl/TiO2 nanotubes (AgCl/TNTs) were synthesized by a hydrothermal method and used in the reduction of nitrate with formic acid as a hole scavenger. As-synthesized photocatalysts were well characterized by field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), N2 adsorption–desorption and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). 5 wt% AgCl/TNTs showed excellent performance in the reduction of nitrate (94.5% conversion of nitrate and 92.9% selectivity to N2, respectively) under UV light (365 nm) irradiation for 30 min. After four reduction cycles of nitrate the 5 wt% AgCl/TNTs also exhibited steady photoactivity. The enhanced photoreductive ability and stability attributed to the nanotube structures provided a higher specific surface area and more active sites. For the combination of AgCl and TNTs, the SPR effect of Ag0 formed by UV light irradiation improved the separation of electron–hole pairs which was proved by the electrochemistry impedance spectra. The effects of AgCl content, hole scavengers, and concentration of formic acid were systematically investigated. Based on the above results a mechanism was proposed. This work provides a novel method for high conversion and selectivity of nitrate reduction to nitrogen by photocatalytic technology.

Graphical abstract: Enhanced photocatalytic conversion and selectivity of nitrate reduction to nitrogen over AgCl/TiO2 nanotubes

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2018
Accepted
12 Jul 2018
First published
13 Jul 2018

Dalton Trans., 2018,47, 11104-11112

Enhanced photocatalytic conversion and selectivity of nitrate reduction to nitrogen over AgCl/TiO2 nanotubes

Z. Geng, Z. Chen, Z. Li, X. Qi, X. Yang, W. Fan, Y. Guo, L. Zhang and M. Huo, Dalton Trans., 2018, 47, 11104 DOI: 10.1039/C8DT01915K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements