Jump to main content
Jump to site search

Issue 31, 2018
Previous Article Next Article

Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging

Author affiliations

Abstract

Lanthanides, holmium(III), dysprosium(III), and terbium(III), were coordinated to an amphiphilic DOTA bis-coumarin derivative and then further assembled with an amphiphilic europium(III) DTPA bis-coumarin derivative into mono-disperse micelles. The self-assembled micelles were characterized and assessed for their potential as bimodal contrast agents for high field magnetic resonance and optical imaging applications. All micelles showed a high transverse relaxation (r2) of 46, 34, and 30 s−1 mM−1 at 500 MHz and 37 °C for Dy(III), Ho(III) and Tb(III), respectively, which is a result of the high magnetic moment of these lanthanides and the long rotational correlation time of the micelles. The quantum yield in aqueous solution ranged from 1.8% for Tb/Eu to 1.4% for Dy/Eu and 1.0% for the Ho/Eu micelles. Multi-photon excited emission spectroscopy has shown that due to the two-photon absorption of the coumarin chromophore the characteristic Eu(III) emission could be observed upon excitation at 800 nm, demonstrating the usefulness of the system for in vivo fluorescence imaging applications. To the best of our knowledge, this is the first example reporting the potential of a holmium(III) chelate as a negative MRI contrast agent.

Graphical abstract: Amphiphilic complexes of Ho(iii), Dy(iii), Tb(iii) and Eu(iii) for optical and high field magnetic resonance imaging

Back to tab navigation

Supplementary files

Article information


Submitted
29 Mar 2018
Accepted
09 May 2018
First published
11 May 2018

Dalton Trans., 2018,47, 10646-10653
Article type
Paper

Amphiphilic complexes of Ho(III), Dy(III), Tb(III) and Eu(III) for optical and high field magnetic resonance imaging

M. Harris, C. Henoumont, W. Peeters, S. Toyouchi, L. Vander Elst and T. N. Parac-Vogt, Dalton Trans., 2018, 47, 10646
DOI: 10.1039/C8DT01227J

Social activity

Search articles by author

Spotlight

Advertisements