Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 19, 2018
Previous Article Next Article

Investigation of ternary metal dodecaborides (M1M2M3)B12 (M1, M2 and M3 = Zr, Y, Hf and Gd)

Author affiliations

Abstract

Samples of metal borides with a nominal composition of ((M1)(1−xz)(M2)(x)(M3)(z)) : 20B (M1, M2 and M3 = Zr, Y, Hf and Gd) were prepared by arc-melting and studied for phase composition (using powder X-ray diffraction (PXRD) and energy dispersive X-ray spectroscopy (EDS)) and mechanical properties (Vickers hardness). Ternary metal dodecaboride phases were successfully synthesized for the majority of compositions, including stabilization of two high-pressure (6.5 GPa) phases (cubic-UB12 structure), HfB12 and GdB12, in (Zr1−xzHfxGdz) : 20B and (Y1−xzHfxGdz) : 20B nominal alloy compositions. Unit cell refinement for the samples showed solid solution formation in most cases. Vickers hardness measurements indicated that most samples possess enhanced hardness in comparison to their parent phases, with the alloy (Zr0.50Y0.25Gd0.25) : 20B having a hardness of 46.9 ± 2.4 GPa compared to 41.3 ± 1.1 and 41.6 ± 1.3 GPa for alloy compositions of 1.0 Zr : 20B and 1.0 Y : 20B, respectively, at 0.49 N of applied load. Using the data from this manuscript as well as previous work, pseudo-ternary phase diagrams (at a constant boron content) have been constructed.

Graphical abstract: Investigation of ternary metal dodecaborides (M1M2M3)B12 (M1, M2 and M3 = Zr, Y, Hf and Gd)

Back to tab navigation

Supplementary files

Article information


Submitted
10 Feb 2018
Accepted
06 Apr 2018
First published
06 Apr 2018

Dalton Trans., 2018,47, 6683-6691
Article type
Paper
Author version available

Investigation of ternary metal dodecaborides (M1M2M3)B12 (M1, M2 and M3 = Zr, Y, Hf and Gd)

G. Akopov, I. Roh, Z. C. Sobell, M. T. Yeung and R. B. Kaner, Dalton Trans., 2018, 47, 6683
DOI: 10.1039/C8DT00563J

Social activity

Search articles by author

Spotlight

Advertisements