Jump to main content
Jump to site search

Issue 28, 2018
Previous Article Next Article

Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore

Author affiliations

Abstract

The ionophore 8-hydroxyquinoline (oxine) has been used to radiolabel cells and liposomal medicines with 111In and, more recently, 89Zr, for medical nuclear imaging applications. Oxine has also shown promising ionophore activity for the positron-emitting radionuclide 52Mn that should allow imaging of labelled cells and nanomedicines for long periods of time (>14 days). However, to date, the radiometal complex formed and its full labelling capabilities have not been fully characterised. Here, we provide supporting evidence of the formation of [52Mn]Mn(oxinate)2 as the metastable complex responsible for its ionophore activity. The cell labelling properties of [52Mn]Mn(oxinate)2 were investigated with various cell lines. The liposomal nanomedicine, DOXIL® (Caelyx) was also labelled with [52Mn]Mn(oxinate)2 and imaged in vivo using PET imaging. [52Mn]Mn(oxinate)2 was able to label various cell lines with moderate efficiency (15–53%), however low cellular retention of 52Mn (21–25% after 24 h) was observed which was shown not to be due to cell death. PET imaging of [52Mn]Mn-DOXIL at 1 h and 24 h post-injection showed the expected pharmacokinetics and biodistribution of this stealth liposome, but at 72 h post-injection showed a profile matching that of free 52Mn, consistent with drug release. We conclude that oxine is an effective ionophore for 52Mn, but high cellular efflux of the isotope limits its use for prolonged cell tracking. [52Mn]Mn(oxinate)2 is effective for labelling and tracking DOXIL in vivo. The release of free radionuclide after liposome extravasation could provide a non-invasive method to monitor drug release in vivo.

Graphical abstract: Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Jan 2018, accepted on 20 Mar 2018 and first published on 24 May 2018


Article type: Paper
DOI: 10.1039/C8DT00100F
Dalton Trans., 2018,47, 9283-9293
  • Open access: Creative Commons BY license
  •   Request permissions

    Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore

    P. Gawne, F. Man, J. Fonslet, R. Radia, J. Bordoloi, M. Cleveland, P. Jimenez-Royo, A. Gabizon, P. J. Blower, N. Long and R. T. M. de Rosales, Dalton Trans., 2018, 47, 9283
    DOI: 10.1039/C8DT00100F

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements