Issue 10, 2018

Halide and hydroxide anion binding in water

Abstract

The formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF2, Cl and Br complexes of H2L22+ were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM). The presence of two halide or bifluoride HF2 (F–H–F) anions forming anion–π interactions, respectively above and below the ligand tetrazine ring, is the leitmotiv of the [(H2L2)X2] (X = HF2, Cl, Br, I) complexes in the solid state, while hydrogen bonding between the anions and protonated morpholine ligand groups contributes to strengthen the anion–ligand interaction, in particular in the case of Cl and Br. In contrast to the solid state, only the anion : ligand complexes of 1 : 1 stoichiometry were found in solution. The stability of these complexes displays the peculiar trend I > F > Br > Cl which was rationalized in terms of electrostatic, hydrogen bond, anion–π interactions and solvent effects. DFT calculations performed on [(H2L2)X]+ (X = F, Cl, Br, I) in PCM water suggested that the ligand assumes a U-shaped conformation to form one anion–π and two salt bridge interactions with the included anions and furnished structural information to interpret the solvation effects affecting complex formation. The formation of hydroxide anion complexes with neutral (not protonated) L1 and L2 molecules represents an unprecedented case in water. The stability of the [L(OH)] (L = L1, L2) complexes is comparable to or higher than the stability of halide complexes with protonated ligand molecules, their formation being promoted by largely favourable enthalpic contributions that prevail over unfavourable entropic changes.

Graphical abstract: Halide and hydroxide anion binding in water

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2017
Accepted
23 Jan 2018
First published
24 Jan 2018

Dalton Trans., 2018,47, 3329-3338

Halide and hydroxide anion binding in water

M. Savastano, C. Bazzicalupi, C. García-Gallarín, C. Giorgi, M. D. López de la Torre, F. Pichierri, A. Bianchi and M. Melguizo, Dalton Trans., 2018, 47, 3329 DOI: 10.1039/C7DT04430E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements