Issue 3, 2018

Selective and reversible adsorption of cationic dyes by mixed ligand Zn(ii) coordination polymers synthesized by reactant ratio modulation

Abstract

Dye capture and separation through coordination polymers (CPs) has been a promising research field in recent times due to the toxic and nondegradable nature of organic dyes released into the environment from various industries as well as the reusability of CPs for the said purpose. Here, we report the synthesis and characterization of two mixed ligand CPs {[Zn2(HBTC)2(L)(H2O)2](C2H5OH)3}n (CP1) and {[Zn5(BTC)2(L)3(OH)4(H2O)2](H2O)4(CH3OH)11}n (CP2) (where H3BTC = 1,3,5-benzene tricarboxylic acid and L = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) by the stoichiometric variation of the precursors. The crystal structure analysis revealed that CP1 is a 2D network composed of a [Zn2(HBTC)2(H2O)2]n motif linked via terminal nitrogen atoms of L and CP2 is a 3D framework in which symmetrically disposed two-dimensional {[Zn5(BTC)2(L)3(OH)4(H2O)2]}n sheets composed of pentanuclear [Zn5(RCO2)63-OH)22-OH)2(H2O)2] SBUs are pillared by L ligands. Adsorption and separation of cationic dyes by CP1 and the solid-state fluorescence properties of both CPs have been investigated. Cationic dyes (RhB, MB, and MV) can be effectively adsorbed by CP1 from their aqueous solution (61%, 90%, and 97%, respectively) while the anionic dye methyl orange (MO) remains uncaptured. Dye desorption studies and CP1 as a column chromatographic filler for the separation of cationic dyes in water have also been demonstrated.

Graphical abstract: Selective and reversible adsorption of cationic dyes by mixed ligand Zn(ii) coordination polymers synthesized by reactant ratio modulation

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2017
Accepted
06 Dec 2017
First published
06 Dec 2017

Dalton Trans., 2018,47, 898-908

Selective and reversible adsorption of cationic dyes by mixed ligand Zn(II) coordination polymers synthesized by reactant ratio modulation

Y. Rachuri, S. Subhagan, B. Parmar, K. K. Bisht and E. Suresh, Dalton Trans., 2018, 47, 898 DOI: 10.1039/C7DT03667A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements