Issue 22, 2018

DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite

Abstract

The O2-activated Ni-ZSM-5 zeolite is a promising catalyst for the selective oxidation (hydroxylation) of methane to methanol. While UV-vis spectra analyses (Shan et al. Langmuir 2014, 30, 8558–8569) have proposed bent mono(μ-oxo)dinickel [Ni2(μ-O)]2+ as the active site in Ni-ZSM-5, calculations based on density functional theory (DFT) have shown that methane activation on such an active site motif leads to a very high activation barrier, which makes it impossible for the reaction to proceed at low temperatures (<200 °C). Thus, explorations of other possible motifs of the Ni active site in ZSM-5 zeolite are indispensable. In the present study, we employed the DFT+U method to calculate methane hydroxylation on various motifs of Ni-oxo active species, including [NiO]2+, [Ni2(μ-O)]2+, [Ni2(μ-O)2]2+, and [Ni3(μ-O)3]2+, in the periodic structure of ZSM-5 zeolite. On the basis of agreement between the previously reported experimental and presently calculated activation energies, we suggest the [Ni2(μ-O)2]2+ and [Ni3(μ-O)3]2+ motifs as two possible candidates for the actual structure of active sites in Ni-ZSM-5. Different from [Cu2(μ-O)]2+-exchanged zeolites extensively studied in recent years, [Ni2(μ-O)2]2+- and [Ni3(μ-O)3]2+-ZSM-5 are predicted to activate methane and desorb the formed methanol with low activation and desorption energies, providing a new direction for low-temperature methane hydroxylation with spontaneous methanol desorption.

Graphical abstract: DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2018
Accepted
03 Oct 2018
First published
04 Oct 2018

Catal. Sci. Technol., 2018,8, 5875-5885

Author version available

DFT exploration of active site motifs in methane hydroxylation by Ni-ZSM-5 zeolite

M. H. Mahyuddin and K. Yoshizawa, Catal. Sci. Technol., 2018, 8, 5875 DOI: 10.1039/C8CY01441H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements