Issue 19, 2018

Energy transfer catalysis mediated by visible light: principles, applications, directions

Abstract

Harnessing visible light to access excited (triplet) states of organic compounds can enable impressive reactivity modes. This tutorial review covers the photophysical fundamentals and most significant advances in the field of visible-light-mediated energy transfer catalysis within the last decade. Methods to determine excited triplet state energies and to characterize the underlying Dexter energy transfer are discussed. Synthetic applications of this field, divided into four main categories (cyclization reactions, double bond isomerizations, bond dissociations and sensitization of metal complexes), are also examined.

Graphical abstract: Energy transfer catalysis mediated by visible light: principles, applications, directions

Supplementary files

Article information

Article type
Tutorial Review
Submitted
27 Apr 2018
First published
08 Aug 2018

Chem. Soc. Rev., 2018,47, 7190-7202

Energy transfer catalysis mediated by visible light: principles, applications, directions

F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer and F. Glorius, Chem. Soc. Rev., 2018, 47, 7190 DOI: 10.1039/C8CS00054A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements