Issue 15, 2018

Photonic functional metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs) have emerged as particularly exciting inorganic–organic hybrid porous materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers. MOFs can combine the inherent physical and chemical properties of both inorganic and organic photonic units due to their inorganic–organic hybrid nature. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of guest species as photonic units. The vast combination possibilities, synergistic effects, as well as controllable and ordered arrangements of multiple photonic units (MPUs) have distinguished MOFs from other inorganic and organic photonic materials and enabled them to be a promising platform to realize novel photonic functional applications. In this review, we summarize the recent and important progress in the design and construction of photonic MOFs, as well as their various applications in luminescence sensing, white-light emission, photocatalysis, nonlinear optics, lasing devices, data storage, and biomedicine. In addition, we highlight the construction strategy and the synergistic effects of MOFs towards achieving high performance and novel photonic functions. Finally, we also outline the challenges in these fields and put forward the prospects and directions for future development.

Graphical abstract: Photonic functional metal–organic frameworks

Article information

Article type
Review Article
Submitted
30 Apr 2018
First published
26 Jul 2018

Chem. Soc. Rev., 2018,47, 5740-5785

Photonic functional metal–organic frameworks

Y. Cui, J. Zhang, H. He and G. Qian, Chem. Soc. Rev., 2018, 47, 5740 DOI: 10.1039/C7CS00879A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements