Issue 18, 2018

Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials

Abstract

Planar chiral [2.2]paracyclophane-based ligands and employment of such enantiopure representative ligands to facilitate selective transformation of prochiral or racemic substances into enantiopure products are rarely explored compared to the complex chiral scaffolds such as ferrocenes. This tutorial discusses recent findings and inspiring progress in design, synthetic tunability and applications of planar chiral [2.2]paracyclophane systems as a practical class of catalysts for asymmetric synthesis. Here, we summarize a series of planar chiral [2.2]paracyclophanes that are becoming an important new tool-box in asymmetric synthesis, employed in a variety of synthetic venues such as new chiral ligands and catalysts for stereo-controlled and enantioselective addition of alkyl, alkenyl, alkynyl and aryl zinc reagents to aliphatic and aromatic aldehydes, ketones, imines and many more. Besides, planar chiral [2.2]paracyclophanes are useful synthons, from a material perspective, can be incorporated into conjugated polymeric systems for chiroptical and optoelectronic properties, find broad applications in bio- and materials science, for instance, gold-based cytostatics, surface-mounted chiral MOF thin films for selective adsorption or in functionalized parylene polymer coatings, to name a few. This is an up-to-date tutorial review, written exclusively on planar chiral [2.2]paracyclophane chemistry, covering key aspects of synthesis, structures, properties, applications and future directions of chiral polymeric assemblies and novel biomaterials built with [2.2]paracyclophanes.

Graphical abstract: Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials

Article information

Article type
Tutorial Review
Submitted
04 Apr 2018
First published
01 Aug 2018

Chem. Soc. Rev., 2018,47, 6947-6963

Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials

Z. Hassan, E. Spuling, D. M. Knoll, J. Lahann and S. Bräse, Chem. Soc. Rev., 2018, 47, 6947 DOI: 10.1039/C7CS00803A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements