Issue 13, 2018

A molecular approach to magnetic metallic nanostructures from metallopolymer precursors

Abstract

In recent years, metallopolymers have attracted much attention as precursors to generate magnetic metal/metal alloy nanoparticles (NPs) through pyrolysis or photolysis because they offer the advantages of ease of solution processability, atomic level mixing and stoichiometric control over composition. The as-generated NPs usually possess narrow size distributions with precise control of composition and density per unit area. Moreover, patterned NPs can be achieved on various substrates in this way owing to the good film-forming property of metallopolymers and such work is important for many applications based on metal nanostructures. By combining the merits of both the solution processability of metallopolymers and nanoimprint lithography (NIL), a new platform can be created for fabricating bit-patterned media (BPM) and the next-generation of nanoscale ultra-high-density magnetic data storage devices. Furthermore, most of these metallopolymers can be used directly as a negative-tone resist to generate magnetic metallic nanostructures by electron-beam lithography and UV photolithography. Self-assembly and subsequent pyrolysis of metalloblock copolymers can also afford well-patterned magnetic metal or metal alloy NPs in situ with periodicity down to dozens of nanometers. In this review, we highlight the use of metallopolymer precursors for the synthesis of magnetic metal/metal alloy NPs and their nanostructures and the related applications.

Graphical abstract: A molecular approach to magnetic metallic nanostructures from metallopolymer precursors

Article information

Article type
Tutorial Review
Submitted
31 Dec 2017
First published
18 May 2018

Chem. Soc. Rev., 2018,47, 4934-4953

A molecular approach to magnetic metallic nanostructures from metallopolymer precursors

Q. Dong, Z. Meng, C. Ho, H. Guo, W. Yang, I. Manners, L. Xu and W. Wong, Chem. Soc. Rev., 2018, 47, 4934 DOI: 10.1039/C7CS00599G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements