Jump to main content
Jump to site search

Issue 48, 2018
Previous Article Next Article

Reply to the ‘Comment on “Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces”’ by M. N. Sullivan, L. T. Chu and L. Zhu, Phys. Chem. Chem. Phys., 2018, 20, DOI: 10.1039/C8CP04497J

Author affiliations

Abstract

In their comment to our recent paper about low HONO and NO2 formation by photolysis of adsorbed HNO3 Sullivan et al. confirmed their former results of HNO3 adsorption on silica under dry conditions using a quartz crystal microbalance. The authors concluded that the differences between their results and our conclusions are caused by the different experimental conditions, i.e. adsorption under very dry conditions compared to our experiments at 50% r.h. While we agree that adsorption of the highly water soluble HNO3 will strongly depend on humidity, there is still the conflict in the photolysis frequency of adsorbed HNO3 under atmospheric conditions to which the authors referred in their previous publications (see their atmospheric implication sections) and to which also our paper refers. If their results on both the adsorption cross sections of HNO3 (two to three orders of magnitude larger compared to the gas phase) and the quantum yield for NO2 formation (close to unity) are applicable under conditions prevailing in the atmosphere, then the photolytic lifetime of HNO3 on surfaces would be only ∼5 min for atmospheric solar flux (0° SZA), which is highly unlikely.

Back to tab navigation

Publication details

The article was received on 26 Sep 2018, accepted on 21 Nov 2018 and first published on 30 Nov 2018


Article type: Comment
DOI: 10.1039/C8CP06039H
Citation: Phys. Chem. Chem. Phys., 2018,20, 30540-30541
  • Open access: Creative Commons BY license
  •   Request permissions

    Reply to the ‘Comment on “Investigations on HONO formation from photolysis of adsorbed HNO3 on quartz glass surfaces”’ by M. N. Sullivan, L. T. Chu and L. Zhu, Phys. Chem. Chem. Phys., 2018, 20, DOI: 10.1039/C8CP04497J

    S. Laufs and J. Kleffmann, Phys. Chem. Chem. Phys., 2018, 20, 30540
    DOI: 10.1039/C8CP06039H

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements