Jump to main content
Jump to site search


Discriminating Seebeck sensing of molecules

Author affiliations

Abstract

One of the fundamental challenges in molecular-scale sensors is the junction to junction variability leading to variations in their electrical conductance by up to a few orders of magnitude. In contrast, thermal voltage measurements of single and many molecule junctions show that this variation in the Seebeck coefficient is smaller. Particularly, the sign of the Seebeck coefficient is often resilient against conformational changes. In this paper, we demonstrate that this robust molecular feature can be utilised in an entirely new direction of discriminating molecular sensing of gas and bio-molecules. We show that the positive sign of the Seebeck coefficient in the presence of cytosine nucleobases changes to a negative one when cancerous cytosine nucleobases were absorbed on the molecular wire formed by metalloporphyrins. Furthermore, the sign of the Seebeck coefficient changes when chlorine gas interacts with the Mn-porphyrin molecular wire. The change in the sign of Seebeck coefficient is due to the formation of spin driven bound states with energies close to the Fermi energy of electrodes. Seebeck sensing is a generic concept and opens new avenues for molecular sensing with huge potential applications in the years ahead.

Graphical abstract: Discriminating Seebeck sensing of molecules

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Sep 2018, accepted on 21 Dec 2018 and first published on 07 Jan 2019


Article type: Paper
DOI: 10.1039/C8CP05991H
Citation: Phys. Chem. Chem. Phys., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Discriminating Seebeck sensing of molecules

    H. Sadeghi, Phys. Chem. Chem. Phys., 2019, Advance Article , DOI: 10.1039/C8CP05991H

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements