Issue 44, 2018

Topologically close-packed characteristic of amorphous tantalum

Abstract

The structural evolution of tantalum (Ta) during rapid cooling was investigated by molecular dynamics simulation, in terms of the system energy, the pair distribution function and the largest standard cluster analysis. It was found that the critical cooling rate for vitrification was about R ≥ 0.25 K ps−1, two orders lower than other metals (such as Au, Ag, Al, Zr and Zn) and that the meta-stable σ phase (β-Ta) not only appears on the pathway from liquid to the stable body-centred cubic crystal, but is also easily obtained at room temperature as a long-lived metastable phase with some probability. The most interesting point is that the liquid, amorphous and β-Ta phases share a nontrivial structural homology; the intrinsic topologically close-packed (TCP) structures in liquids are inherited and developed in different ways, resulting in amorphous or crystalline solids, respectively. With highly local packing fractions and geometrical incompatibility with the global close-packed (such as hcp, fcc and bcc) crystals, TCP structures inevitably result in structural heterogeneity and favour vitrification. As a superset of icosahedrons, TCP structures are ubiquitous in metallic melts, and just before the onset of crystallization reach their maximal number, which is much bigger in Ta than in other poor-GFA metals; so we argue that the strong forming ability of TCP local structures significantly enhances the glass forming ability of pure metals. These findings open up a new perspective that could have a profound impact on the research into metallic glasses.

Graphical abstract: Topologically close-packed characteristic of amorphous tantalum

Supplementary files

Article information

Article type
Paper
Submitted
19 Sep 2018
Accepted
18 Oct 2018
First published
18 Oct 2018

Phys. Chem. Chem. Phys., 2018,20, 28088-28104

Topologically close-packed characteristic of amorphous tantalum

Z. Wu, Y. Mo, L. Lang, A. Yu, Q. Xie, R. Liu and Z. Tian, Phys. Chem. Chem. Phys., 2018, 20, 28088 DOI: 10.1039/C8CP05897K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements