Issue 46, 2018

Solvation energies of the proton in methanol revisited and temperature effects

Abstract

We report in this work the absolute solvation enthalpies and the absolute solvation free energies of the proton in methanol at temperatures ranging from 20 to 340 K and an extrapolation to a desired temperature. To achieve this, we thoroughly investigated the structures of neutral methanol clusters (MeOH)n=2–10 and those of the protonated methanol decamer H+(MeOH)n=10 at the M06-2X/6-31++g(d,p) level of theory. As a result, we noted that up to the octamer, the population of the neutral methanol clusters is constituted by cyclic isomers. For nonamers and decamers, both cyclic and branched cyclic isomers contribute to the population of the clusters. Moreover, folded or distorted cyclic isomers are the most favored at low temperatures, while higher temperatures favored the flat cyclic isomers for n = 7–9. For the methanol decamer, a branched cyclic isomer is found to be the most favored at low temperatures. Elsewhere, the infrared spectra of all the investigated structures are provided and compared against experiment. The binding energy of neutral methanol is calculated at the X/6-31++g(d,p) levels of theory, where X represents the DFT functionals M062X, APFD, MN15, ωB97XD and M08HX. It is observed that these functionals provide results in good agreement with the experimental vaporization enthalpy. However, the APFD functional shows the best performance followed by the other functionals in the order of M062X, MN15 and ωB97XD. Furthermore, the calculated solvation energies of the proton in methanol at these various levels of theory and at MP2/6-31++g(d,p) show that the ωB97XD functional shows the best performance in evaluating the solvation enthalpy and the solvation free energy of the proton in methanol and the calculated values are respectively −1140.5 kJ mol−1 and −1100.7 kJ mol−1 at room temperature. Elsewhere, we noted that the absolute solvation enthalpy of the proton in methanol is less affected by a change in temperature. However, the absolute solvation free energy of the proton in methanol remains constant only at temperatures lower than 180 K. For higher temperatures, the absolute solvation free energy of the proton in methanol increases as a linear function of the temperature and can be approximated by ΔGm(H+,T) = 0.200T − 1161.4.

Graphical abstract: Solvation energies of the proton in methanol revisited and temperature effects

Supplementary files

Article information

Article type
Paper
Submitted
15 Sep 2018
Accepted
30 Oct 2018
First published
01 Nov 2018

Phys. Chem. Chem. Phys., 2018,20, 29184-29206

Solvation energies of the proton in methanol revisited and temperature effects

A. Malloum, J. J. Fifen and J. Conradie, Phys. Chem. Chem. Phys., 2018, 20, 29184 DOI: 10.1039/C8CP05823G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements