Issue 43, 2018

Photoinduced energy transfer in carbazole–BODIPY dyads

Abstract

A series of carbazole (CBZ)–boron dipyrromethene (BODIPY) based donor–acceptor dyads, CB1, CB2, and CB3, with CBZ as an energy donor, tethered together with spacers of varied sizes i.e., phenyl bridge, biphenyl bridge and diphenylethyne bridge, respectively, are reported. The newly synthesized dyads were characterized by various spectroscopic techniques. A comparison of the absorption and electrochemical data of the dyads with their reference compounds (i.e., 9-phenyl-9H-carbazole (C0) and N,N′-difluoroboryl-1,3,7,9-tetramethyl-5-phenyldipyrrin (B0)) revealed minimal ground-state interactions between the chromophores. Selective excitation of CBZ in the dyads at 290 nm resulted in the quenching of the CBZ emission followed by the appearance of BODIPY emission, revealing efficient energy transfer from singlet excited CBZ (1CBZ*) to BODIPY. The photoinduced energy transfer phenomenon was studied in three different solvents of varying polarity. The driving forces for energy transfer (ΔGEN) for all the dyads were found to be exothermic. The rate constants for energy transfer, kENT, measured by the femtosecond transient absorption technique in toluene were found to be in the range of 0.8–2.0 × 1010 s−1, depending on the type of spacer between the CBZ and BODIPY entities, and were in close agreement with the theoretically estimated rates according to the Förster energy transfer model. In contrast, selective excitation of BODIPY in these dyads at 485 nm resulted in small quenching of the BODIPY emission, suggesting a lack of major photochemical events originating from 1BODIPY*.

Graphical abstract: Photoinduced energy transfer in carbazole–BODIPY dyads

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2018
Accepted
04 Oct 2018
First published
04 Oct 2018

Phys. Chem. Chem. Phys., 2018,20, 27418-27428

Author version available

Photoinduced energy transfer in carbazole–BODIPY dyads

G. Reddy, N. Duvva, S. Seetharaman, F. D’Souza and L. Giribabu, Phys. Chem. Chem. Phys., 2018, 20, 27418 DOI: 10.1039/C8CP05509B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements