Issue 42, 2018

Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein

Abstract

Here, we examine the aggregation response of a series of triglyceride-based biosurfactants in cyclohexane and triglyceride solvents via all-atom molecular dynamics simulations and supporting experiments. The surfactant aggregation follows in all systems, with only minor deviations, a multiple equilibrium, i.e. open association, model. Monoglyceride aggregation in cyclohexane exhibits a critical micellization concentration, cmc, showing a cmc can exist even in a system following open association. However, the cmc is associated with a change in balance with oligomeric and larger aggregates in the solution, not an onset of aggregate formation. It is demonstrated that reverse micelles can form in the absence of water stabilized by intersurfactant hydrogen bonds alone, and that the polarity and hydrogen bonding capability of triolein systematically reduces surfactant aggregation in comparison to cyclohexane. A comparison between CHARMM27 and CHARMM36 simulation models reveals that while trends are preserved, the models differ in quantitative prediction. Finally, consolidation of the general aggregation response trends predicted by the modelling are obtained via 7,7,8,8-tetracyanoquinodimethane dye (TCNQ) solubilization experiments on the corresponding model plant oil systems. The findings provide guidelines for predicting and controlling surfactant aggregation response in organic solvents via tuning the solvent polarity and hydrogen bonding ability, and a critical assessment of simulation and aggregation models for surfactant systems in organic solvents.

Graphical abstract: Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2018
Accepted
11 Oct 2018
First published
11 Oct 2018

Phys. Chem. Chem. Phys., 2018,20, 27192-27204

Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein

S. Vierros, M. Österberg and M. Sammalkorpi, Phys. Chem. Chem. Phys., 2018, 20, 27192 DOI: 10.1039/C8CP05104F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements