Issue 44, 2018

Structure and dynamics of high-temperature strontium aluminosilicate melts

Abstract

We report the study of high-temperature melts (1600–2300 °C) and related glasses in the SrO–Al2O3–SiO2 phase diagram considering three series: (i) depolymerized ([SrO]/[Al2O3] = 3); (ii) fully polymerized ([SrO]/[Al2O3] = 1); and (iii) per-aluminous ([SrO]/[Al2O3] < 1). By considering the results from high-temperature 27Al NMR and high-temperature neutron diffraction, we demonstrate that the structure of the polymerized melts is controlled by a close-to-random distribution of Al and Si in the tetrahedral sites, while the depolymerized melts show smaller rings with a possible loss of non-bridging oxygens on AlO4 units during cooling for high-silica compositions. A few five-fold coordinated VAl sites are present in all compositions, except per-aluminous ones where high amounts of high-coordinated aluminium are found in glasses and melts with complex temperature dependence. In high-temperature melts, strontium has a coordination number of 8 or less, i.e. less than in the corresponding glasses. The dynamics of high-temperature melts were studied from 27Al NMR relaxation and compared to macroscopic shear viscosity data. These methods provide correlation times in close agreement. At very high temperatures, the NMR correlation times can be related to the oxygen self-diffusion coefficient, and we show a decrease of the latter with increasing Si/(Al + Si) ratios for polymerized melts with no compositional dependence for depolymerized ones. The dominant parameter controlling the temperature dependence of the aluminum environment of all melts is the distribution of Al–(OSi)p(OAl)(4-p) units.

Graphical abstract: Structure and dynamics of high-temperature strontium aluminosilicate melts

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2018
Accepted
11 Oct 2018
First published
12 Oct 2018

Phys. Chem. Chem. Phys., 2018,20, 27865-27877

Structure and dynamics of high-temperature strontium aluminosilicate melts

P. Florian, A. Novikov, J. W. E. Drewitt, L. Hennet, V. Sarou-Kanian, D. Massiot, H. E. Fischer and D. R. Neuville, Phys. Chem. Chem. Phys., 2018, 20, 27865 DOI: 10.1039/C8CP04908D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements