Issue 32, 2018

Hidden magnetic order in plutonium dioxide nuclear fuel

Abstract

A thorough understanding of the chemistry of PuO2 is critical to the design of next-generation nuclear fuels and the long-term storage of nuclear materials. Despite over 75 years of study, the ground-state magnetic structure of PuO2 remains a matter of much debate. Experimental studies loosely indicate a diamagnetic (DM) ground-state, whereas theoretical methods have proposed either a collinear ferromagnetic (FM) or anti-ferromagnetic (AFM) ground-state, both of which would be expected to cause a distortion from the reported Fm[3 with combining macron]m symmetry. In this work, we have used accurate calculations based on the density functional theory (DFT) to systematically investigate the magnetic structure of PuO2 to resolve this controversy. We have explicitly considered electron-correlation, spin–orbit interaction and noncollinear magnetic contributions to identify a hereto unknown longitudinal 3k AFM ground-state that retains Fm[3 with combining macron]m crystal symmetry. Given the broad interest in plutonium materials and the inherent experimental difficulties of handling this compound, the results presented in this paper have considerable implications for future computational studies relating to PuO2 and related actinide structures. As the crystal structure is coupled by spin–orbit interactions to the magnetic state, it is imperative to consider relativity when creating computational models.

Graphical abstract: Hidden magnetic order in plutonium dioxide nuclear fuel

Supplementary files

Article information

Article type
Paper
Submitted
06 Jun 2018
Accepted
25 Jul 2018
First published
26 Jul 2018
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2018,20, 20943-20951

Hidden magnetic order in plutonium dioxide nuclear fuel

J. T. Pegg, A. E. Shields, M. T. Storr, A. S. Wills, D. O. Scanlon and N. H. de Leeuw, Phys. Chem. Chem. Phys., 2018, 20, 20943 DOI: 10.1039/C8CP03583K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements