Issue 34, 2018

Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods

Abstract

Plasmon damping in gold nanorods (AuNRs) results in the broadening of the localized surface plasmon resonance (LSPR) linewidth. LSPR broadening of plasmonic nanoparticles is useful to maximize the fraction of light energy in light harvesting and energy conversion transferred to molecules attached on the surface. However, our understanding of plasmon decay channels in AuNRs is still limited, and chemical interface damping (CID) is the most poorly understood damping mechanism. Herein, to better understand plasmon damping including CID, we performed a single particle study of plasmonic anisotropic AuNRs using dark-field (DF) microscopy and spectroscopy. First, we examined the size-dependent broadening of the homogeneous LSPR linewidth of single AuNRs in water with three different aspect ratios (ARs) at a fixed diameter of 25 nm. The LSPR linewidth increased with a decrease in the AR of single AuNRs because of the reduced average distance of hot electrons to the surface. Second, we investigated the effect of refractive index variation of the surrounding medium on the LSPR linewidth in single AuNRs of three different sizes. The LSPR linewidth in single AuNRs remained almost constant regardless of their sizes while increasing the dielectric constant of the medium. Finally, we examined the effect of adsorbate thiol molecules on the homogeneous LSPR linewidth of single AuNRs in ethanol. The LSPR linewidth was broadened upon increasing the carbon chain length of 1-alkanethiol, and 4-nitrothiophenol with a strong electron withdrawing group induced a large broadening of the LSPR linewidth. Furthermore, single AuNRs with smaller ARs showed a larger broadening of the LSPR linewidth in the presence of adsorbate thiol molecules through CID. Therefore, this investigation provides a deeper insight into the size effect on plasmon damping including CID induced by the chemical interface effect in single AuNRs.

Graphical abstract: Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2018
Accepted
01 Aug 2018
First published
02 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 22197-22202

Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods

S. W. Moon, P. V. Tsalu and J. W. Ha, Phys. Chem. Chem. Phys., 2018, 20, 22197 DOI: 10.1039/C8CP03231A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements