Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

DNAs form various structures through hydrogen-bonding, base-stacking and electrostatic interactions. Although these noncovalent interactions are known to be cooperative in stabilizing a G-quadruplex (G4) structure of DNA, we find from all-atom molecular dynamics simulations that the electrostatic charge–dipole interaction is competitive with both hydrogen-bonding and base-stacking interactions. For the thrombin-binding aptamer (TBA) forming a chair-type antiparallel G4 structure, we have examined effects of an intercalating metal ion [K+, Sr2+, Mn+: an ion having a charge of n+ (n = 1–4) with the ionic radius of K+] on structural properties and noncovalent interactions. When K+ in the TBA·K+ complex is replaced with Sr2+, guanine dipoles in the two G-tetrads are realigned toward the central metal ion, thereby distorting the planar G4 geometry. Replacing K+ with Sr2+ significantly enhances the charge–dipole interaction but substantially reduces the number of hydrogen bonds in the G-tetrads. In the case of TBA·Mn+ complexes, as the charge n increases, the charge–dipole interaction increases but both of the hydrogen-bonding and base-stacking interactions decrease. These results suggest that the charge–dipole interaction realigning guanine dipoles in the G-tetrads is not cooperative but competitive with both hydrogen-bonding and base-stacking interactions favoring the planar G-tetrad geometry. Obviously, the charge state of an intercalating metal ion is as important as the ionic radius in forming a stable G4 structure. Thus, a delicate balance between these competing noncovalent interactions makes the chair-type antiparallel G4 structure of TBA selective for intercalating metal ions.

Graphical abstract: Charge–dipole interactions in G-quadruplex thrombin-binding aptamer

Page: ^ Top