Jump to main content
Jump to site search

Issue 20, 2018
Previous Article Next Article

Counterion binding alters surfactant self-assembly in deep eutectic solvents

Author affiliations

Abstract

Micellisation of surfactants in deep eutectic solvents has been recently demonstrated to provide a controllable way to modify micelle morphology. Ion-pair interactions between the solvent and the surfactant headgroup were identified as affecting the micellisation by modifying the charge density of the micelle. Here we explore the micellisation of dodecylsulfate surfactants with different counterions (Li+, Cs+, Mg2+, Bmim+, Emim+, cholinium+) dissolved in two deep eutectic solvents: choline chloride:urea and choline chloride:glycerol. Surface tension results show a solvent and counterion dependence of the CMC of the surfactants. Small-angle neutron scattering was subsequently used to investigate the morphology of the micelles formed. The results show that the elongation of the micelles is strongly dependent on the solvent, showing more elongated aggregates in choline chloride:urea than in choline chloride:glycerol. The morphology of micelles in DES was also found to depend on the counterion, where the affinity of binding showed similarities to that in water.

Graphical abstract: Counterion binding alters surfactant self-assembly in deep eutectic solvents

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Feb 2018, accepted on 27 Apr 2018 and first published on 01 May 2018


Article type: Paper
DOI: 10.1039/C8CP01008K
Citation: Phys. Chem. Chem. Phys., 2018,20, 13952-13961
  • Open access: Creative Commons BY license
  •   Request permissions

    Counterion binding alters surfactant self-assembly in deep eutectic solvents

    A. Sanchez-Fernandez, O. S. Hammond, K. J. Edler, T. Arnold, J. Doutch, R. M. Dalgliesh, P. Li, K. Ma and A. J. Jackson, Phys. Chem. Chem. Phys., 2018, 20, 13952
    DOI: 10.1039/C8CP01008K

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements