Issue 2, 2018

Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics

Abstract

We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.

Graphical abstract: Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2017
Accepted
27 Nov 2017
First published
27 Nov 2017

Phys. Chem. Chem. Phys., 2018,20, 1091-1097

Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics

V. Varade, T. Markus, K. Vankayala, N. Friedman, M. Sheves, D. H. Waldeck and R. Naaman, Phys. Chem. Chem. Phys., 2018, 20, 1091 DOI: 10.1039/C7CP06771B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements