Issue 24, 2018

Acidochromic spiropyran–merocyanine stabilisation in the solid state

Abstract

In this work, we present an innovative approach to stabilise the open-ring merocyanine form of a spiropyran compound. In the solid state, the merocyanine form is rarely observed, highlighting the importance of this contribution. Our concept is based on a co-crystallisation approach of the open form with an inorganic acid. This way, we identified a reliable technique for stabilising the coloured merocyanine form, and in one specific case, we even obtained crystals with increased stability towards photodegradation. 15 novel crystal structures of spiropyran derivatives with several inorganic acids were determined by single crystal X-ray diffraction. Solvent evaporation of spiropyran compounds, i.e. 1,3,3-trimethylindolinobenzopyrylospiran (SPH), 1,3,3-trimethylindolino-β-naphthopyrylospiran (SPBenz), 1,3,3-trimethylindolino-8′-methoxybenzopyrylospiran (SPOMe) and 1,3,3-trimethylindolino-6′-nitrobenzopyrylospiran (SPNO2), in the presence of inorganic acids, namely hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and phosphoric acid, yielded the rare open-ring merocyanine form stabilised by protonation of the primary oxygen atom unfolded by ring-opening isomerisation and compensating the charge with a hydrogen bonded anion. Analysis of the solid state properties was performed by thermal gravimetric analysis and diffuse reflectance spectroscopy.

Graphical abstract: Acidochromic spiropyran–merocyanine stabilisation in the solid state

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2018
Accepted
06 Apr 2018
First published
09 Apr 2018

CrystEngComm, 2018,20, 3318-3327

Acidochromic spiropyran–merocyanine stabilisation in the solid state

V. K. Seiler, K. Callebaut, K. Robeyns, N. Tumanov, J. Wouters, B. Champagne and T. Leyssens, CrystEngComm, 2018, 20, 3318 DOI: 10.1039/C8CE00291F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements