Alkane guest packing drives switching between multimeric deep-cavity cavitand assembly states†
Abstract
Alkane guest transfer into aqueous dimeric, tetrameric, hexameric, and octameric assemblies of the deep-cavity cavitand TEMOA is examined using molecular simulations. The experimental transitions between aggregation states strongly correlate with calculated alkane transfer free energy minima, demonstrating the guiding role of guest packing on stabilizing multimeric complexes. The predictive simulation approach described affords a salient rationale as to why octameric assemblies have yet to be experimentally observed.