Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2018
Previous Article Next Article

Supramolecular polymeric biomaterials

Author affiliations

Abstract

Polymeric chains crosslinked through supramolecular interactions—directional and reversible non-covalent interactions—compose an emerging class of modular and tunable biomaterials. The choice of chemical moiety utilized in the crosslink affords different thermodynamic and kinetic parameters of association, which in turn illustrate the connectivity and dynamics of the system. These parameters, coupled with the choice of polymeric architecture, can then be engineered to control environmental responsiveness, viscoelasticity, and cargo diffusion profiles, yielding advanced biomaterials which demonstrate rapid shear-thinning, self-healing, and extended release. In this review we examine the relationship between supramolecular crosslink chemistry and biomedically relevant macroscopic properties. We then describe how these properties are currently leveraged in the development of materials for drug delivery, immunology, regenerative medicine, and 3D-bioprinting (253 references).

Graphical abstract: Supramolecular polymeric biomaterials

Back to tab navigation

Article information


Submitted
25 Aug 2017
Accepted
01 Nov 2017
First published
02 Nov 2017

Biomater. Sci., 2018,6, 10-37
Article type
Review Article

Supramolecular polymeric biomaterials

J. L. Mann, A. C. Yu, G. Agmon and E. A. Appel, Biomater. Sci., 2018, 6, 10
DOI: 10.1039/C7BM00780A

Social activity

Search articles by author

Spotlight

Advertisements