Jump to main content
Jump to site search

Issue 30, 2018
Previous Article Next Article

Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection

Author affiliations

Abstract

Rapid monitoring of concentration changes of neurotransmitters and energy metabolites is important for understanding the biochemistry of neurological disease as well as for developing therapeutic options. This paper describes the development of a separation-based sensor using microchip electrophoresis (ME) with electrochemical (EC) detection coupled to microdialysis (MD) sampling for continuous on-line monitoring of adenosine and its downstream metabolites. The device was fabricated completely in PDMS. End-channel electrochemical detection was accomplished using a carbon fiber working electrode embedded in the PDMS. The separation conditions for adenosine, inosine, hypoxanthine, and guanosine were investigated using a ME-EC chip with a 5 cm long separation channel. The best resolution was achieved using a background electrolyte consisting of 35 mM sodium borate at pH 10, 15% dimethyl sulfoxide (DMSO), and 2 mM sodium dodecyl sulphate (SDS), and a field strength of 222 V cm−1. Under these conditions, all four purines were separated in less than 85 s. Using a working electrode detection potential of 1.4 V vs. Ag/AgCl, the limits of detection were 25, 33, 10, and 25 μM for adenosine, inosine, hypoxanthine, and guanosine, respectively. The ME-EC chip was then coupled to microdialysis sampling using a novel all-PDMS microdialysis–microchip interface that was reversibly sealed. This made alignment of the working electrode with the end of the separation channel much easier and more reproducible than could be obtained with previous MD-ME-EC systems. The integrated device was then used to monitor the enzymatic conversion of adenosine to inosine in vitro.

Graphical abstract: Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection

Back to tab navigation

Article information


Submitted
09 May 2018
Accepted
06 Jul 2018
First published
13 Jul 2018

Anal. Methods, 2018,10, 3737-3744
Article type
Paper
Author version available

Continuous monitoring of adenosine and its metabolites using microdialysis coupled to microchip electrophoresis with amperometric detection

Shamal M. Gunawardhana and S. M. Lunte, Anal. Methods, 2018, 10, 3737
DOI: 10.1039/C8AY01041B

Social activity

Search articles by author

Spotlight

Advertisements