Issue 4, 2018

Investigation of compacted DNA structures induced by Na+ and K+ monovalent cations using biological nanopores

Abstract

In aqueous solutions, an elongated, negatively charged DNA chain can quickly change its conformation into a compacted globule in the presence of positively charged molecules, or cations. This well-known process, called DNA compaction, is a method with great potential for gene therapy and delivery. Experimental conditions to induce these compacted DNA structures are often limited to the use of common compacting agents, such as cationic surfactants, polymers, and multivalent cations. In this study, we show that in highly concentrated buffers of 1 M monovalent cation solutions at pH 7.2 and 10, biological nanopores allow real-time sensing of individual compacted structures induced by K+ and Na+, the most abundant monovalent cations in human bodies. Herein, we studied the ratio between compacted and linear structures for 15-mer single-stranded DNA molecules containing only cytosine nucleotides, optimizing the probability of linear DNA chains being compacted. Since the binding affinity of each nucleotide to cation is different, the ability of the DNA strand to fold into a compacted structure greatly depends on the type of cations and nucleotides present. Our experimental results compare favorably with findings from previous molecular dynamics simulations for the DNA compacting potential of K+ and Na+ monovalent cations. We estimate that the majority of single-stranded DNA molecules in our experiment are compacted. From the current traces of nanopores, the ratio of compacted DNA to linear DNA molecules is approximately 30 : 1 and 15 : 1, at a pH of 7.2 and 10, respectively. Our comparative studies reveal that Na+ monovalent cations have a greater potential of compacting the 15C-ssDNA than K+ cations.

Graphical abstract: Investigation of compacted DNA structures induced by Na+ and K+ monovalent cations using biological nanopores

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2017
Accepted
06 Jan 2018
First published
09 Jan 2018

Analyst, 2018,143, 906-913

Investigation of compacted DNA structures induced by Na+ and K+ monovalent cations using biological nanopores

T. Vu, S. Davidson and J. Shim, Analyst, 2018, 143, 906 DOI: 10.1039/C7AN01857F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements