Issue 7, 2018

Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration

Abstract

Magnetic biomaterials are a key focus in medical research. Tropoelastin is the soluble precursor of elastin and is a critical component of tissues requiring elasticity as part of their physiological function. By utilising the versatility of tropoelastin and the ability to tailor its properties, we developed a novel magnetic spongy-like hydrogel based on tropoelastin doped with magnetic properties by in situ precipitation method. The presence of magnetic nanoparticles altered the secondary structure of tropoelastin. Bioengineered tropoelastin-based magnetic spongy-like hydrogels displayed a homogenous distribution of magnetic nanoparticles throughout the tropoelastin network and quick magnetic responsiveness to an applied external magnetic field. Morphologically, in the presence of magnetic nanoparticles, hydrated tropoelastin spongy-like hydrogels showed apparently smaller pore sizes and less swelling. Furthermore, in vitro biological studies using human tendon-derived cells revealed that magnetically responsive tropoelastin spongy-like hydrogels supported cell viability and enabled cell adhesion, spreading and migration into the interior of the spongy-like hydrogel up to two weeks. The bioengineered tropoelastin-based magnetic spongy-like hydrogel represents a novel class of hybrid biomaterial that can serve as a platform for soft tissue regeneration.

Graphical abstract: Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2017
Accepted
25 Jan 2018
First published
26 Jan 2018

J. Mater. Chem. B, 2018,6, 1066-1075

Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration

T. Pesqueira, R. Costa-Almeida, S. M. Mithieux, P. S. Babo, A. R. Franco, B. B. Mendes, R. M. A. Domingues, P. Freitas, R. L. Reis, M. E. Gomes and A. S. Weiss, J. Mater. Chem. B, 2018, 6, 1066 DOI: 10.1039/C7TB02035J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements