Jump to main content
Jump to site search

Issue 41, 2018
Previous Article Next Article

Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells

Author affiliations

Abstract

Developing highly active and stable HOR catalysts still remains a challenging task for alkaline anion exchange membrane fuel cells. A carbon supported IrRu nanowire catalyst with different compositions was prepared by a soft template method, involving the chemical reduction of iridium and ruthenium complexes using sodium borohydride. The Ir1Ru1 ultrathin nanowires exhibit higher hydrogen oxidation activity and better stability under alkaline conditions in comparison with commercial Pt/C. An electrochemical test demonstrates that the mass and specific activities at an over potential of 50 mV of Ir1Ru1 NWs/C are 4.2 and 3.8 times that of commercial Pt/C, respectively. Furthermore, the synthesized Ir1Ru1 NWs display better stability against potential cycling due to their unique interconnected structure. After 2000 potential cycles, the electrochemically active surface area (ECSA) of Ir1Ru1 NWs/C reduces only by 2.27%, and the mass activity@50 mV is reduced by 8.21%. The single cell used the as-prepared Ir1Ru1 NWs/C as the anode catalyst and Pt/C as the cathode catalyst, and the AAEMFC shows a peak power density of more than 485 mW cm−2, which is about 1.66 fold that of the AAEMFC using commercial Pt/C as the anode catalyst (292 mW cm−2). These results suggest that carbon supported ultrathin Ir1Ru1 NW catalysts can be used as substitutes for commercial Pt/C for the HOR in alkaline media for alkaline anion exchange membrane fuel cell application.

Graphical abstract: Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jul 2018
Accepted
13 Sep 2018
First published
11 Oct 2018

J. Mater. Chem. A, 2018,6, 20374-20382
Article type
Paper

Ultrathin IrRu nanowire networks with high performance and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells

B. Qin, H. Yu, X. Gao, D. Yao, X. Sun, W. Song, B. Yi and Z. Shao, J. Mater. Chem. A, 2018, 6, 20374
DOI: 10.1039/C8TA07414C

Social activity

Search articles by author

Spotlight

Advertisements